3.3.6 \(\int \sec ^m(c+d x) \sqrt [3]{b \sec (c+d x)} \, dx\) [206]

Optimal. Leaf size=82 \[ -\frac {3 \, _2F_1\left (\frac {1}{2},\frac {1}{6} (2-3 m);\frac {1}{6} (8-3 m);\cos ^2(c+d x)\right ) \sec ^{-1+m}(c+d x) \sqrt [3]{b \sec (c+d x)} \sin (c+d x)}{d (2-3 m) \sqrt {\sin ^2(c+d x)}} \]

[Out]

-3*hypergeom([1/2, 1/3-1/2*m],[4/3-1/2*m],cos(d*x+c)^2)*sec(d*x+c)^(-1+m)*(b*sec(d*x+c))^(1/3)*sin(d*x+c)/d/(2
-3*m)/(sin(d*x+c)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {20, 3857, 2722} \begin {gather*} -\frac {3 \sin (c+d x) \sqrt [3]{b \sec (c+d x)} \sec ^{m-1}(c+d x) \, _2F_1\left (\frac {1}{2},\frac {1}{6} (2-3 m);\frac {1}{6} (8-3 m);\cos ^2(c+d x)\right )}{d (2-3 m) \sqrt {\sin ^2(c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^m*(b*Sec[c + d*x])^(1/3),x]

[Out]

(-3*Hypergeometric2F1[1/2, (2 - 3*m)/6, (8 - 3*m)/6, Cos[c + d*x]^2]*Sec[c + d*x]^(-1 + m)*(b*Sec[c + d*x])^(1
/3)*Sin[c + d*x])/(d*(2 - 3*m)*Sqrt[Sin[c + d*x]^2])

Rule 20

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[b^IntPart[n]*((b*v)^FracPart[n]/(a^IntPart[n]
*(a*v)^FracPart[n])), Int[u*(a*v)^(m + n), x], x] /; FreeQ[{a, b, m, n}, x] &&  !IntegerQ[m] &&  !IntegerQ[n]
&&  !IntegerQ[m + n]

Rule 2722

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
)*Sqrt[Cos[c + d*x]^2]))*Hypergeometric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2], x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rule 3857

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x])^(n - 1)*((Sin[c + d*x]/b)^(n - 1)
*Int[1/(Sin[c + d*x]/b)^n, x]), x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rubi steps

\begin {align*} \int \sec ^m(c+d x) \sqrt [3]{b \sec (c+d x)} \, dx &=\frac {\sqrt [3]{b \sec (c+d x)} \int \sec ^{\frac {1}{3}+m}(c+d x) \, dx}{\sqrt [3]{\sec (c+d x)}}\\ &=\left (\cos ^{\frac {1}{3}+m}(c+d x) \sec ^m(c+d x) \sqrt [3]{b \sec (c+d x)}\right ) \int \cos ^{-\frac {1}{3}-m}(c+d x) \, dx\\ &=-\frac {3 \, _2F_1\left (\frac {1}{2},\frac {1}{6} (2-3 m);\frac {1}{6} (8-3 m);\cos ^2(c+d x)\right ) \sec ^{-1+m}(c+d x) \sqrt [3]{b \sec (c+d x)} \sin (c+d x)}{d (2-3 m) \sqrt {\sin ^2(c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.14, size = 83, normalized size = 1.01 \begin {gather*} \frac {\csc (c+d x) \, _2F_1\left (\frac {1}{2},\frac {1}{2} \left (\frac {1}{3}+m\right );\frac {1}{2} \left (\frac {7}{3}+m\right );\sec ^2(c+d x)\right ) \sec ^{-1+m}(c+d x) \sqrt [3]{b \sec (c+d x)} \sqrt {-\tan ^2(c+d x)}}{d \left (\frac {1}{3}+m\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^m*(b*Sec[c + d*x])^(1/3),x]

[Out]

(Csc[c + d*x]*Hypergeometric2F1[1/2, (1/3 + m)/2, (7/3 + m)/2, Sec[c + d*x]^2]*Sec[c + d*x]^(-1 + m)*(b*Sec[c
+ d*x])^(1/3)*Sqrt[-Tan[c + d*x]^2])/(d*(1/3 + m))

________________________________________________________________________________________

Maple [F]
time = 0.47, size = 0, normalized size = 0.00 \[\int \left (\sec ^{m}\left (d x +c \right )\right ) \left (b \sec \left (d x +c \right )\right )^{\frac {1}{3}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^m*(b*sec(d*x+c))^(1/3),x)

[Out]

int(sec(d*x+c)^m*(b*sec(d*x+c))^(1/3),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^m*(b*sec(d*x+c))^(1/3),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c))^(1/3)*sec(d*x + c)^m, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^m*(b*sec(d*x+c))^(1/3),x, algorithm="fricas")

[Out]

integral((b*sec(d*x + c))^(1/3)*sec(d*x + c)^m, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt [3]{b \sec {\left (c + d x \right )}} \sec ^{m}{\left (c + d x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**m*(b*sec(d*x+c))**(1/3),x)

[Out]

Integral((b*sec(c + d*x))**(1/3)*sec(c + d*x)**m, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^m*(b*sec(d*x+c))^(1/3),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c))^(1/3)*sec(d*x + c)^m, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{1/3}\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^m \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b/cos(c + d*x))^(1/3)*(1/cos(c + d*x))^m,x)

[Out]

int((b/cos(c + d*x))^(1/3)*(1/cos(c + d*x))^m, x)

________________________________________________________________________________________